Техноэнерг
Четверг, 20.07.2017, 21:39
Меню сайта

Форма входа

Категории раздела
Топливо - Теория горения. [224]
Высокотемпературные установки и процессы. [25]
Теплообменные установки и процессы. [56]
Котельные установки - конструкция и принцип работы. [47]
Устройство и эксплуатация оборудования газомазутных котельных. [61]
Металлургическое оборудование. [75]
Конструкции трубопроводной запорной арматуры. [59]
Объемные гидромашины и гидроприводы. [40]
Гидравлика. Гидравлические расчеты. [45]
Смазка оборудования. [49]
Оборудование пароконденсатных систем [20]
Справочник по сборке узлов и механизмов машин. [23]
Универсальные зажимные устройства токарных станков. [45]
Справочник металлиста [46]
Экономика. [21]

Поиск

Календарь
«  Февраль 2014  »
ПнВтСрЧтПтСбВс
     12
3456789
10111213141516
17181920212223
2425262728

Наш опрос
Чем для Вас является теплоэнергетика
Всего ответов: 777

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Главная » 2014 » Февраль » 28 » Предмет гидравлики.
20:18
Предмет гидравлики.


хайгетропин



Предмет гидравлики.

Раздел механики, в котором изучают равновесие и движение жидкости, а также силовое взаимодействие между жидкостью и обтекаемыми ею телами или ограничивающими ее поверхностями, называется гидромеханикой. Если же помимо жидкостей изучают движение газов и обтекание ими тел, то науку называют аэрогидродинамикой.
Науку о законах равновесия и движения жидкостей и о способах приложения этих законов к решению практических задач называют гидравликой. В гидравлике рассматривают, главным образом, потоки жидкости, ограниченные и направленные твердыми стенками, т. е. течения в открытых и закрытых руслах (каналах). В понятие «русло» или «канал» включают поверхности (стенки), которые ограничивают и направляют поток, следовательно, пе только русла рек, каналов и лотков, но и различные трубопроводы, насадки, элементы гидромашин и других устройств, внутри которых протекает жидкость.
Таким образом, можно сказать, что в гидравлике изучают в основном внутренние течения жидкостей и решают так называемую внутреннюю задачу в отличие от внешней, связанной с внешним обтеканием тел сплошной средой, которое имеет место при движении твердого тела в жидкости или газе (воздухе). Внешнюю задачу рассматривают в аэрогидромеханике. Она получает значительное развитие в связи с потребностями авиации и судостроения.
Термину «жидкость» в гидромеханике часто придают более широкий смысл, чем это принято в обыденной жизни. В понятие «жидкость» включают все тела, для которых свойственна текучесть, т. е. способность сильно изменять свою форму под действием сколь угодно малых сил. Таким образом, в это понятие включают как жидкости обычные, называемые капельными, так и газы. Первые отличаются тем, что в малом количестве под действием поверхностного натяжения принимают сферическую форму, а в большом — обычно образуют свободную поверхность раздела с газом. Важной особенностью капельных жидкостей является то, что они ничтожно мало изменяют свой объем при изменении давления, поэтому их обычно считают несжимаемыми. Газы, наоборот, могут значительно уменьшаться в объеме под действием давления и неограниченно расширяться при отсутствии давления, т. е. они обладают большой сжимаемостью.
Несмотря на это различие, законы движения капельных жидкостей и газов при определенных условиях можно считать одинаковыми. Основным из этих условий является малая скорость течения газа по сравнению со скоростью распространения в нем звука.
В гидравлике изучают движения, главным образом, капельных жидкостей, причем в подавляющем большинстве случаев последние рассматривают как несжимаемые. Внутренние течения газа относятся к области гидравлики лишь в тех случаях, когда их скорости' значительно меньше скорости звука и, следовательно, сжимаемостью газа можно пренебречь. Такие случаи движения встречаются в практике довольно часто (например, течение воздуха в вентиляционных системах, в системах кондиционирования воздуха и некоторых газопроводах). В дальнейшем изложении под термином «жидкость» будем понимать капельную жидкость, а также газ, когда его можно считать несжимаемым.
Историческое развитие механики жидкостей шло двумя различными путями.

Первый путь — теоретический, путь точного математического анализа, основанного на законах механики. Он привел к созданию теоретической гидромеханики, которая долгое время являлась самостоятельной дисциплиной, непосредственно не связанной с экспериментом. Метод теоретической гидромеханики является весьма эффективным средством научного исследования. Однако на пути чисто теоретического исследования движения жидкости встречается множество трудностей, и методы теоретической гидромеханики не всегда дают ответы на вопросы, выдвигаемые практикой.

Второй путь — путь широкого привлечения эксперимента и накопления опытных данных для использования их в инженерной практике — привел к созданию гидравлики; он возник из насущных задач практической, инженерной деятельности людей. В начальный период своего развития гидравлика была наукой чисто эмпирической. В настоящее же время в ней, где это возможно и целесообразно, все больше применяют методы теоретической гидромеханики для решения отдельных задач, а теоретическая гидромеханика все чаще начинает прибегать к эксперименту как к критерию достоверности своих выводов. Таким образом, различие в методах этих двух направлений одной и той же науки постепенно исчезает.

Метод, используемый в современной гидравлике при исследовании движения, заключается в следующем. Исследуемые явления сначала упрощают и к ним применяют законы теоретической механики. Затем полученные результаты сравнивают с данными опытов, выясняют степень расхождения, уточняют и исправляют теоретические выводы и формулы для приспособления их к практическому использованию. Целый ряд явлений, крайне трудно поддающихся теоретическому анализу из-за сложности, исследуют экспериментальным путем, а результаты представляют в виде эмпирических формул.
Гидравлика дает методы расчета и проектирования разнообразных гидротехнических сооружений (плотин, каналов, водосливов, трубопроводов для подачи всевозможных жидкостей), гидромашин (насосов, гидротурбин, гидропередач), а также других гидравлических устройств, применяемых во многих областях техники. Особенно велико значение гидравлики в машиностроении, где приходится иметь дело с закрытыми руслами (например, трубами) и напорными течениями в них, т. е. с потоками без свободной поверхности и с давлением, отличным от атмосферного.
Гидросистемы, состоящие из насосов, трубопроводов, различных гидроагрегатов широко используют в машиностроении в качестве систем жидкостного охлаждения, топливоподачи, смазочных и др.
На различных современных машинах все более широкое применение находят гидропередачи (гидроприводы) и гидроавтоматика.
Гидропередачи представляют собой устройства для передачи механической энергии и преобразования движения посредством жидкости. По сравнению с передачами других видов (зубчатыми и т. п.) гидропередачи имеют ряд существенных преимуществ: простота преобразования вращательного движения в возвратно-поступательное, возможность плавного (бесступенчатого) изменения соотношения скоростей входного и выходного звеньев, компактность конструкций и малая масса гидромашин при заданной мощности по сравнению, например, с электромашинами и др.
Гидропередачи, снабженные системами автоматического или ручного управления, образуют гидроприводы, которые благодаря перечисленным преимуществам широко используют в различных металлообрабатывающих станках, на летательных аппаратах (самолетах, вертолетах, ракетах), на сухопутных транспортных машинах (колесных и гусеничных), в строительно-дорожных и подъемно-транспортных машинах, в прокатных станах и прессах и т. п.
Гидроприводы, гидроавтоматика и различные гидравлические устройства являются весьма перспективными для комплексной автоматизации и механизации производства.
Для расчета и проектирования гидроприводов, их систем автоматического регулирования и других устройств с гидромашинами и гидроавтоматикой, а также для правильной их эксплуатации, ремонта и наладки нужно иметь соответствующую подготовку в области гидравлики и теории гидромашин.


Категория: Гидравлика. Гидравлические расчеты. | Теги: жидкость, гидравлика, машина
наука нормы правила классификация характеристики Характеристика температура расчет схемы газ теплота размеры параметры вода энергетика трубопровод оборудование смазка требования схема конструкция устройство масло котел Топливо технология пар жидкость давление насос
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Copyright MyCorp © 2017