Происхождение топлива. Все виды твердого топлива нашей планеты своим происхождением обязаны солнечной энергии и хлорофиллу - особому веществу, содержащемуся в листьях и других зеленых частях растений, которые создают сложные органические вещества, а в дальнейшем превращаются в топливо. В своих превращениях вещество топлива последовательно проходит стадии образования торфа, бурого угля, каменного угля, антрацита. В природе существуют различные виды твердого топлива, отличающиеся разнообразными составом и свойствами. Твердое топливо в основном образуется из высокоорганизованных растений - древесины, листьев, хвои и т. п. Отмершие части высокоорганизованных растений разрушаются грибками при свободном доступе воздуха и превращаются в торф - рыхлую, расплывчатую массу перегноя, так называемых гуминовых кислот. Скопление торфа переходит в бурую массу, а затем в бурый уголь. В дальнейшем под воздействием высокого давления и повышенной температуры бурые угли подвергаются последующим превращениям, переходя в каменные угли, а затем в антрацит. Состав топлива. Топливо в том виде, в котором оно добыто, включает в себя органическую массу и балласт. Органической массой топлива считают ту часть, которая произошла из органических веществ: углерода, водорода, кислорода и азота; в балласт включают серу, минеральные примеси — золу и влагу топлива: Со + н° + 0° + № + 8° = 100%. (12) Твердое и жидкое топливо состоит из углерода С, водорода И, органической серы S и горючей колчеданной серы S кислорода О и азота К, находящихся в виде сложных соединений. Кроме указанных элементов, составляющих горючую массу топлива, в состав топлива входит еще балласт — зола А и влага Б = (13) Летучей, или горючей, серой называется 8л = 8о + 8,. (14) Состав топлива выражают в процентах по массе. В топочной технике различают рабочую, сухую и горючую массы топлива. В связи с этим при буквенном обозначении вещества, входящего в состав топлива, вверху ставят буквы р, с, или г. Под рабочей массой топлива понимают топливо в том виде, в каком оно поступает к потребителю. Состав рабочей массы топлива выражают так: СР + НР + ОР + ^ + Б^ + ЗР-Н АР + \УР = 100%. (15)
Углерод и водород— самые ценные части топлива. Углерод содержится в значительном количестве в топливе всех видов: древесине и торфе 50-58%, в бурых и каменных углях 65-80%, в тощих углях и антрацитах 90-95%, в сланцах 61-73%, в мазуте 84-87% (цифры даны в процентах на горючую массу топлива). Чем больше углерода в топливе, тем больше оно выделяет тепла при сгорании. Состав рабочей массы топлива значительно зависит от величины балласта, поэтому чаще всего приводятся данные по составу горючей массы топлива, которая более стабильна для топлива каждого вида и месторождения. Водород является второй важнейшей частью каждого топлива. в топливе водород частично находится в связанном с кислородом выше, составляя внутреннюю влагу топлива, вследствие чего понижается тепловая ценность топлива. Водород играет большую роль в образовании летучих веществ, выделяющихся при нагревании топлива без доступа воздуха. В состав летучих водород входит в чистом виде и в виде углеводородных и других органических соединении. Содержание водорода в процентах от горючей массы топлива составляет: в дровах и торфе до 6, бурых каменных углях 3,8 — 5,8, горючих сланцах до 9,5, в антраците 2 и в мазуте 10,6 — 11,1. Кислород, содержащийся в топливе, является балластом. Не будучи теплообразующим элементом и связывая водород топлива, кис:юрод снижает теплоту его сгорания. Содержание кислорода в органической массе топлива с его возрастом снижается с 41% для древесины до 2,2% для антрацита. Азот также является балластной инертной составляющей топлива, снижающей процентное содержание в нем горючих элементов. При сгорании топлива азот в продуктах сгорания содержится как в свободном виде, так и в виде окислов N0^. Последние относятся к вредным составляющим продуктов сгорания, количество которых должно быть лимитировано. Сера содержится в топливе в виде органических соединений и колчедана 8к, объединяемых в летучую серу 8л. Кроме того, сера входит в состав топлива в виде сернистых солей — сульфатов (на-пример, гипса СаЗОз), не способных гореть. Сульфатную серу принято относить к золе топлива. Присутствие серы значительно снижает качество топлива, так как сернистые газы 8О2 и 8О3 (соединяясь с Н2О, образуют На 804) разрушают металл котельного оборудования, попадая в атмосферу, вредно действуют на живые организмы и растительность. Поэтому сера —крайне нежелательный элемент для топлива. Сернистые газы, проникая в рабочие помещения, могут вызвать отравление обслуживающего персонала. Зола топлива представляет собой балластную смесь различных минеральных веществ, остающихся после полного сгорания всей горючей части топлива. Зола влияет на качество сгорания топлива отрицательно. Различают три разновидности золы по ее происхождению: первичная — внутренняя, вторичная и третичная. Первичная зола образуется из минеральных веществ, содержащихся в растениях. Содержание ее в топливе незначительно и распределение равномерно. Вторичная зола Получается вследствие заноса растительных остатков землей и песком в период пластообразования. Третичная зола попадает в топливо во время его добычи, хранения или транспортировки. Зола является нежелательным балластом топлива, снижающим содержание в нем других горючих элементов. Кроме того, зола, образуя отложения на поверхностях нагрева котлоагрегата, уменьшает теплопередачу от газов к воде, пару и воздуху в его элементах. Наличие большого количества золы затрудняет эксплуатацию котлоагрегата. Если зола легкоплавкая, она налипает на поверхности нагрева котла, нарушая нормальный режим его работы (шлакование). Содержание золы в процентах от рабочей массы топлива составляет: в дровах 0,6, торфе 5—7, в бурых и каменных углях от 4 до 25, в мазуте 0,3.
При сжигании твердого топлива важное значение имеют характеристика золы, степень ее легкоплавкости. Плавкость золы определяют в лаборатории. В особую электропечь помещают несколько выполненных из золы пирамид «конусов» высотой 20 мм со стороной основания 7 мм. Одна из граней пирамиды должна быть перпендикулярна основанию. В процессе постепенного нагревания пирамид в электрической печи отмечают три точки (рис. 8): температуру начала деформации определяемую в начале плавления верхушки пирамиды; температуру размягчения І2, которая фиксируется в момент, когда верхушка пирамиды наклонится до основания или же пирамида превратится в шар, и температуру когда содержимое пирамиды растечется до основанию. Зола бывает легкоплавкой с температурой размягчения ниже 1050°С, вызывающая шлакование топки при сжигании топлива, и тугоплавкой с температурой размягчения выше 1050°С. Учитывая большое влияние зольности на качественные характеристики топлива, для сравнительных подсчетов используют понятие приведенной зольности.
Влага топлива складывается из внешней, или механической, вызванной поверхностным увлажнением кусков топлива и заполнением влагой пор и капилляров, и равновесной, называемой гигроскопической, которая устанавливается в материале при длительном соприкосновении с окружающим воздухом. Содержание внешней влаги определяют высушиванием пробы топлива на воздухе до постоянной массы, а гигроскопической твердого топлива — высушиванием в сушильном шкафу измельченной пробы воздушно-сухого топлива до постоянной массы при 102 —105°С. Для определения влажности жидкого топлива отстаивают воду в течение суток при 40°С в специальных сосудах и взвешивают всю пробу и воду. При нахождении влажности газообразного топлива пропускают пробу газа через слой хлористого кальция, поглощающего влагу. В топочной технике используют понятие приведенной влажности, которая показывает, сколько влаги в процентах от рабочей массы топлива приходится на 1 МДж низшей теплоты сгорания WP = Жр/Яp. (19)
Рис. 8. Характер деформации лабораторного образца золы твердого топлива при определении ее плавкости
Летучие вещества и кокс Для оценки качества топлива и условий горения большое значение имеет выход летучих веществ. Рхли нагревать топливо без доступа воздуха, то под воздействием высокой температуры (от 200 до 800°С) происходит разложение его на газообразную часть — летучие вещества (водород, метан, тяжелые углеводороды, окись углерода, немного двуокиси углерода и некоторые другие газы, т. е. в основном газообразные горючие вещества) и твердый остаток — кокс. Выход летучих веществ, их состав, а также температура, при которой они начинают выделяться, определяются химическим возрастом топлива: чем топливо старше по возрасту, тем меньше выход летучих и выше температура начала их выделения. Например, выход летучих торфа составляет приблизительно 70% общей массы горючей части топлива, они начинают выделяться при 120 —150°С; выход летучих бурых и молодых каменных углей уменьшается приблизительно от 13 до 58,5%, они начинают выделяться при 170—250°С, а антрацита — до 4% при температуре начала выделения газов около 400°С. Летучие вещества оказывают большое влияние на процесс горения топлива: чем больше выход летучих, тем ниже температура воспламенения и легче зажигание топлива и тем больше поверхность фронта пламени. Топливо с большим выходом летучих (торф, бурый уголь, молодой каменный уголь) легко загорается и сгорает быстро с малой потерей тепла. Топливо с малым выходом летучих, например антрацит, загорается значительно труднее, горит медленнее и сгорает не полностью. Кокс, оставшийся после полного выделения летучих, состоит из углерода и минеральных топливных примесей. В зависимости от вида термически разложенного топлива кокс может быть порошкообразным, слипшимся, спекшимся, сплавленным. Теплота сгорания топлива. Наиболее важной характеристикой топлива является теплота сгорания, которой называют количество тепла, получаемого при сжигании 1 кг твердого или жидкого топлива или 1 нм^ газообразного топлива в кДж/кг (ккал/кг): 1 ккал-4,1868, или 4,19, кДж.
Как указывалось ранее, к горючим элементам в топливе относят углерод С, водород Н и летучую горючую серу 8л. Элементарно их горение может быть представлено следующими уравнениями: С + 02 = С02; 2Н2 + 02 = 2Н20; S + 02 = S02. (20)
В процессе горения горючих элементов выделяется следующее количество тепла при сжигании 1 кг: углерода — 33,65 МДж (8031 ккал/кг), серы — 9 МДж (2172 ккал/кг), водорода — 141,5 МДж (33770 ккал/кг).
Различают высшую и низшую теплоту сгорания. Высшей теплотой сгорания (Ql) топлива называют все количество тепла, выделенное при сгорании 1 кг твердого или жидкого топлива, или 1 нм' газообразного (при нормальных условиях) и превращении водяных паров, содержащихся в продуктах сгорания, в жидкость. На практике, однако, не удается охладить продукты сгорания до полной конденсации и потому введено понятие низшей теплоты сгорания, которую получают, вычитая из высшей теплоты сгорания теплоту парообразования водяных паров как содержащихся в топливе, так и образовавшихся при его сжигании. На парообразование 1 кг водяных паров расходуется 2514 кДж/кг (600 ккал/кг). Для твердого и жидкого топлива низшая теплота сгорания (кДж/кг или ккал/кг)
Числовые коэффициенты в этой формуле подобраны экспериментально. Теплота сгорания твердого и жидкого топлива может быть определена и экспериментально, калориметрическим способом. Теплоту сгорания рабочего топлива определяют в калориметре (рис. 9), который состоит из калориметрического сосуда 5, заполненного водой, калориметрической бомбы 2 с чашечкой для навески топлива, оболочки 6, термометра 4, двойной луппы 3, вибратора электродвигателя, пропеллерной мешалки 1 для перемешивания воды в оболочке и подставки 1. Для нахождения теплоты сгорания топлива в чашечку помещают навеску топлива и сжигают ее, а результаты испытания определяют по показаниям термометра. Для удобства сравнительных расчетов при сжигании в котельных разных сортов топлива введено понятие «условное топливо», Условным принято считать топливо, теплота сгорания которого равна 29,35 МДж/кг (7000 ккал/кг). Пересчет расхода натураль¬ного топлива в условное, кг, производят по формуле Производственные плановые задания и отчетные данные но топливу всегда удобно выражать в условном топливе.
Классификация твердого топлива.
По химическому возрасту различают три стадии образования твердого топлива: торфяную, буроугольную и каменноугольную. Древесина- это топливо, используемое преимущественно в мелких котельных установках. Широкое применение имеют отходы деревообделочного производства: горбыли, щепа, стружки, опилки, кора и др. Дрова применяют реже. Влажность воздушно-сухих дров не превышает 25%, полусухих — 35%, свежесрубленных — 50%. Опилки обычно имеют влажность 45 — 60%. К полусухим относят дрова весенней заготовки, пролежавшие не менее 6 мес после рубки, в том числе не менее двух летних месяцев. К сухим относят дрова, пролежавшие после рубки около года в лесу и влажность которых не превышает 30%. Дрова как топливо характеризуются высоким выходом летучих горючих веществ — до 85% и незначительным содержанием золы — в среднем до 1%, лишь в сплавных дровах зольность повышается до 5%. Следовательно, балласт дров определяется в основном их влажностью, от которой и зависит теплота сгорания. Теплота сго¬рания МШІО зависит от породы дров, что видно из табл. 8,
Рабочий состав и теплота сгорания древесных отходов (щепы, опилок и др.) не отличаются от состава древесины, из которой они получены. При пониженной теплоте сгорания дрова имеют преимущества: легкую воспламеняемость, отсутствие серы и малую зольность, что позволяет ограничиваться простыми топочными устройствами, работающими эффективно.
Торф по способу добычи подразделяют на три основных вида: машинно-формовочный (багерный), гидравлический и фрезерный. При машинно-формовочном способе торфяная масса забирается КЗ торфяного карьера экскаваторами (багерами) и подается на специальные прессы, где получает форму ленты, которая разрезается на отдельные кирпичи, а затем их механически транспортерами распределяют по полю сушки, после чего складывают в штабеля. Гидравлический способ добычи торфа основан на размывке торфяного массива струей воды, идущей под сильным напором. Получающаяся жижа — пульпа пропускается через специальные растиратели, перекачивается насосами на площадку, где и высушивается. Высушенная торфяная масса особыми машинами нарезается на кирпичи. фрезерный способ заключается в том, что торфяное болото последовательно разрабатывается — вспахивается специальными машинами на глубину от 5 до 35 мм. Получаемая торфяная крошка подсушивается, а затем складывается в штабеля. Торф как топливо по своим свойствам близок к дровам. Влажность торфа колеблется в зависимости от способа добычи, условий сушки и хранения от 30—40 до 50—55%. Влажность же фрезерного торфа выше кускового примерно на 5 —10%. Зольность торфа (А''), добываемого в центральных областях СССР, колеблется от 7 до 15%. Теплота сгорания 02= 8,38 - 10,72 МДж/кг = 3511-4492 ккал/кг).
Ископаемые угли разделяют на бурые, каменные и антрациты. При классификации угли различают по маркам, классам и группам, а также по составу, крупности, зольности. Марки отличаются одна от другой выходом летучих и степенью спекаемости. Группы углей определяют по величине их зольности. По крупности кусков ископаемые угли делят на классы. Бурый уголь содержит много влаги, соединяется легко с кислородом воздуха и при длительном хранении на воздухе сильно выветривается и рассыпается в порошок. Кроме того, он обладает большой склонностью к самовозгоранию. По своей структуре отличается повышенным содержанием балласта и необычно высокой гигроскопичностью, вследствие чего влажность бурых углей И^Р = = 17—55%. Бурые угли не спекаются, отличаются большим выходом летучих (Р = 33,5 — 58,5%) на горючую массу и зольностью на сухую массу (А''= 10,5 — 34%), высоким содержанием серы (Рп=0,6—5,9%). Рабочая теплота сгорания 62=10,7 — 17,5 МДж/кг (4177 ккал/кг). Каменный уголь на территории СССР имеется в огромных количествах и подразделяется: на длиннопламенный, газовый, паровичный жирный, коксовый паровичный спекающийся и тощий. Каменные угли отличаются высокой теплотой сгорания 2н = = 21,20 -28,07 МДж/кг (5097-6700 ккал/кг). Выход летучих Р= 3,5-45%. Каменный уголь применяют непосредственно как топливо иля перерабатывают на кокс. По виду кокса различают угли неспека- ющиеся (порошкообразный кокс) и спекающиеся (сплавленный кокс, ЕЕногда вспученный). Каменные угли довольно плотны и малопо¬ристы и содержание внешней влаги в них значительно ниже, чем в бурых углях. Многие каменные угли обладают повышенной механической прочностью. В хранении они более устойчивы, меньше подвержены самовозгоранию, а некоторые их виды совсем не самовозгораются. Антрацит относится к старейшим по происхождению каменным углям, отличается большой твердостью, трудно загорается, горит коротким пламенем, хорошо выдерживает перегрузки и перевозки. К ним относят угли с выходом летучих на горючую массу Р= 2—9% и теплотой сгорания горючей массы 25 = 24,35—27,24 МДж/кг (5800 — 6500 ккал/кг). Переходным между каменными углями и антрацитом является полуантрацит. Антрацит и полуантрацит не самовозгораются. Характеристика твердого топлива энергетического назначения приведена в табл. 9. Марки углей отличаются одна от другой выходом летучих и степенью спекаемости. Различают следующие марки углей: Д (длиннопламенные), Г (газовые), Ж (жирные), КЖ (коксовые жирные), К (коксовые), С (отощенные спекающиеся), Т (тощие), СС (слабоспекающиеся). Все виды углей по размеру кусков делят на классы (табл. 10). Горючие сланцы являются продуктами разложения растительных остатков, оседавших на дне больших водоемов; смешиваясь с минеральными осадками, образовывалось илистое вещество — сапропель, которое обогащалось водородом, уплотнялось и превращалось в горючие сланцы. Сланцы имеют теплоту сгорания = 10,38 МДж/кг (2477ккал/кг), при их сжигании образуется очень большое количество золы Л°=64,5%. Выход летучих у сланцев очень высок: Р=90%, влажность — 13%. Сланцы являются местным топливом.
Таблица 10. Классификация углей по размеру кусков * Первое слагаемое - зола, второе - двуокись углерода карбонатов (минеральная)
МАЗУТ В зависимости от вязкости мазут бывает нескольких марок, различающихся температурой застывания, которая всегда выше 0°С, Для наиболее вязких сортов мазута температура застывания — 25°С и выше, поэтому необходим предварительный подогрев такого мазута: при перекачке до 60—70°С, а при сжигании до 140°С. Температурой вспышки мазута называют такую температуру, при которой пары его образуют с окружающим воздухом смесь, воспламеняющуюся при поднесении к ней огня. При разогреве мазутов в открытых (без давления) емкостях в целях пожарной безопасности температура подогрева должна быть примерно на 10°С ниже температуры вспышки. В закрытых емкостях (змеевиках, трубах); находящихся под давлением, топливо можно подогревать значительно выше температуры его вспышки. Жидкое котельное топливо (топочный мазут) по своему элементарному составу мало отличается от сырой нефти. Мазут обычно содержит некоторое количество воды, увеличивающееся после водных перевозок, а также при разогреве в цистернах острым паром. Согласно ГОСТ 10585 — 75 мазут подразделяют на шесть марок: Ф5, Ф12, М40, МЮО, М200 и МП, из них в стационарных котельных установках сжигают мазут трех марок — М40, МЮО и М200. Характеристика мазута разных марок приведена в табл. И.